Photorespiration

Simplified photorespiration cycle
Simplified photorespiration and Calvin cycle

Photorespiration (also known as the oxidative photosynthetic carbon cycle or C2 cycle) refers to a process in plant metabolism where the enzyme RuBisCO oxygenates RuBP, wasting some of the energy produced by photosynthesis. The desired reaction is the addition of carbon dioxide to RuBP (carboxylation), a key step in the Calvin–Benson cycle, but approximately 25% of reactions by RuBisCO instead add oxygen to RuBP (oxygenation), creating a product that cannot be used within the Calvin–Benson cycle. This process lowers the efficiency of photosynthesis, potentially lowering photosynthetic output by 25% in C3 plants.[1] Photorespiration involves a complex network of enzyme reactions that exchange metabolites between chloroplasts, leaf peroxisomes and mitochondria.

The oxygenation reaction of RuBisCO is a wasteful process because 3-phosphoglycerate is created at a lower rate and higher metabolic cost compared with RuBP carboxylase activity. While photorespiratory carbon cycling results in the formation of G3P eventually, around 25% of carbon fixed by photorespiration is re-released as CO2[2] and nitrogen, as ammonia. Ammonia must then be detoxified at a substantial cost to the cell. Photorespiration also incurs a direct cost of one ATP and one NAD(P)H.

While it is common to refer to the entire process as photorespiration, technically the term refers only to the metabolic network which acts to rescue the products of the oxygenation reaction (phosphoglycolate).

  1. ^ Sharkey T (1988). "Estimating the rate of photorespiration in leaves". Physiologia Plantarum. 73 (1): 147–152. doi:10.1111/j.1399-3054.1988.tb09205.x.
  2. ^ Leegood RC (May 2007). "A welcome diversion from photorespiration". Nature Biotechnology. 25 (5): 539–40. doi:10.1038/nbt0507-539. PMID 17483837. S2CID 5015366.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search